
Simulation of non-vaporizing tubular 
nylon-6 reactors with radial gradients: 
finite-difference computations 

Debasis Pal and Santosh K. Gupta* 
Department of Chemical Engineering, Indian Institute of Technology, Kanpur 208016, India 
(Received 4 March 1988; accepted 24 February 1989) 

This work presents a comprehensive computer simulation study for the hydrolytic polymerization of 
e-caprolactam without water removal in a continuous tubular reactor. It incorporates a laminar 
(Hagen-Poiseuille) or plug flow velocity profile, as well as radial thermal diffusion. The solution of the 
balance equations is carried out using two types of finite-difference techniques coupled with Gear's method 
for solving the ordinary differential equations so generated. Simulation results are obtained for various 
operating conditions. A comparison is made of the different methods used and their limitations are discussed. 
These results will form the basis for a comparison of the numerical results that could be generated using 
far more powerful computational tools like orthogonal collocation or finite-element techniques. 
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INTRODUCTION 

The hydrolytic polymerization of e-caprolactam is a very 
important commercial process and has drawn the 
attention of various researchers in recent years 1-16. In 
fact, several excellent reviews 1-5 have appeared on 
this subject, emphasizing various aspects of the 
polymerization process. 

The work on nylon-6 polymerization falls broadly into 
two categories. The emphasis in the early work was 
primarily on the determination of the polymerization 
mechanism and on the rate and equilibrium constants 
for the various reactions. These have been reviewed by 
ReimschuesseP. More recently, the emphasis has shifted 
to the study of physical processes like heat transfer, mass 
transfer, etc., associated with chemical reaction in 
large-scale reactors, and to the actual modelling and 
optimization of industrial reactors. Tai and Tagawa 2 and 
Kumar and Gupta 3'4 have reviewed these aspects. 

The reaction mechanism comprises three major 
reactions, namely ring opening of caprolactam by water 
to form aminocaproic acid, and chain and step-growth 
reactions. In addition, there are several important 
side-reactions. Among these are the formation of 
cyclic oligomers, desamination and peroxidation of 
caprolactam ~. The most important side-reactions are 
those associated with cyclic oligomers, since their 
presence in the product causes problems in its processing 
(e.g. in spinning and moulding). The kinetic scheme 
considered in this work is shown in Table I. This includes 
the main reactions and the reactions associated with the 
cyclic dimer. The other cyclization reactions are omitted 
since their rate constants are not yet available. Moreover, 
it is well known 3'5 that the formation of the cyclic dimer 
predominates, and can be used as a first-order 
approximation of the total cyclics present. 
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The reactions are known to be catalysed by the 
carboxyl end-groups present in the reaction mass. The 
apparent rate constants are of the form 

k, = k~ + k~[-COOH] (1) 

with Arrhenius forms being used for k ° and k~. All the 
reactions in Table I are reversible in nature and the 
temperature dependences of the equilibrium constants 
are given by standard thermodynamic relations. The rate 
and equilibrium constants for the reactions of Table 1 are 
given in Table 2. These are based on results from a series 
of experiments carried out by Tai et al. 6, using a 
non-linear regression analysis. 

Various kinds of reactors, e.g. batch reactors, tubular 
reactors, continuous-flow stirred-tank reactors (CSTRs) 
and combinations thereof, are employed in industry to 
manufacture nylon-6. Computer simulations based on 
mathematical modelling of the polymerization processes 
in these reactors or their combinations offer information 
that is of paramount importance for quality control, 
process control and operational optimization of existing 
plant as well as in the design of new plant. Several studies 
have been reported on the simulation of both ideal 
reactors T-9 and some common industrial reactors l°-~a. 

The present work focuses on the simulation of 
continuous tubular reactors with radial variations of 
temperature and concentrations accounted for. In most 
of the studies on tubular reactors reported up till now, 
radial variations of temperature (and hence of concen- 
trations) have not been considered. This was probably 
to keep the analysis simple. The only study wherein such 
radial profiles are indeed computed is the one by Tai et 
al. T, who study tubular reactors with heat removal by 
nitrogen stripping. These workers have used the 
two-dimensional (in the radial and axial directions) 
finite-difference computational technique to solve their 
balance equations after apparently (and erroneously) 
uncoupling the mass and energy balance equations. They 
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have presented results on several other types of reactors 
and reactor combinations, and their work on tubular 
reactors is slightly less comprehensive than one would 
have liked. Our initial attempts on the optimization of 
such reactors has revealed the need for faster and more 
efficient computational techniques to integrate the 
modelling equations for such reactors, in order to cut 
down on the total computational costs. This work was 
undertaken to satisfy these needs, and presents detailed 
simulation results using two types of finite-difference 
algorithms. Results are generated for several conditions, 
e.g. for both plug and laminar flow velocity profiles in a 
tubular reactor and for both adiabatic and non-adiabatic 
operations. Results obtained with the two computational 

Table I Kinetic scheme for nylon-6 polymerization 

Ring opening 
kl 

C1 + Wk,l ~=kl/K1Pl 

Polycondensation 

k2 
P, + P,, - • P ,+ , .+  W 

k' 2 =k2/K 2 

Polyaddition 
k3 

Pn+Cj  " Pn+J 
k~ = k3/K 3 

Ring opening of cyclic dimer 

k4 

C 2 + W k~'= k4/K4 P2 

n, m = l ,  2, 3 . . .  

n = l , 2  . . . .  

5. Polyaddition of cyclic dimer 
k5 

P,+C2k,5"=ks/K5 P.+2 n =  1, 2 . . . .  

O 

Jl 
H - - N - - ( C H 2 ) 5 - - C  

' i i 
C j (c-caprolactam) 

O H O 

I I I 
H - - N - - ( C H  2 ) s - - C - - N - - ( C H 2  )s - C  

! J 
C 2 (cyclic dimer) 

H O 
/ I II \ 

H - ~ -  N (CH2) 5 C ) .  OH 

P. (polymer: nylon-6) 

techniques and various model assumptions are com- 
pared. In addition to their intrinsic worth and interest, 
these results also form a reference with which results 
using more powerful and faster computational techniques 
(e.g. orthogonal collocation, orthogonal collocation on 
finite elements, etc., which could be used for optimization 
studies) can be compared in the future. 

FORMULATION 

Expressions for the rates of formation, R e , of various 
species, 4, in the reaction mixture and those of the first 
two moments 17-19, 20 and 21, defined by: 

2k = ~ nk[p,] k=0,  1, 2 . . . .  (2) 
n = l  

can easily be written from Table 1, and are available in 
our earlier work 5. The heat generation rate AQ 
(kcal kg- x h-  x) is expressed in terms of the net forward 
rates of the five reactions in Table 1, and is given in 
Table 3. 

Table 4 shows the mass and heat balance equations as 
applied to a tubular reactor (see Fioure 1) having a 
laminar (Hagen-Poiseuille) flow profile: 

V z = 2ray (1 - r 2 / R  z) (3) 

where V,v is the mean velocity (see 'Nomenclature' for 
definitions of terms). The average residence time, t, is 
given by: 

t=z/Vav (4) 

where z is the distance along the reactor. In writing these 
equations, the diffusion of all the components has been 
neglected and only thermal diffusion in the radial 
direction has been considered. Whereas the diffusion of 
heavy polymer molecules may indeed be negligible, it 
may not be quite justified to neglect the diffusion 
of the lower-molecular-weight components, particularly 
monomer and water. This assumption is made for two 

Table 3 Rate of heat generation: 

A Q =  ~ (-AH)IRI/IO 3 
i = 1  

R1 = k l [C , ]  [W] - k i [ P 1 ]  

R2 = k2202- k~[W] (21-20)  

Ra = k3[C112o-  k3(2o-  [P1]) 

R4 = k , [Cz]  [W] - k~[P2] 

Rs = k5 [C2120-k5(20-  [P1] - [P2]) 

(a) 

(b) 
(c) 

(d) 

(e) 

Table 2 Rate and equilibrium constants  for nylon-6 polymerization2: 

k~ = k ° + k~[-COOH] = A ° exp(-E°/RgT) + A~ exp(-E~/RgT) [ - C O O H ]  

Ki=exp(ASJRs -AHI /RxT  ) i= 1, 2 . . . . .  5 

i A ° ( kgmol -  l h -1) E ° (calmo1-1) A~ (kg2 mo l -  2 h -  1) E~ (calmol - l )  AHI (cal mo1-1 ) AS i (eu) 

1 5.9874 x 105 1.9880 x 104 4.3075 x 107 1.8806 x 104 1.9180 x 103 --7.8846 

2 1.8942 x 101° 2.3271 x 104 1.2114 x 10 TM 2.0670 × 104 -5 .9458  x 103 9.4374 x 10-1 

3 2.8558 x 109 2.2845 x 104 1.6377 x 101° 2.0107 x 104 -4 .0438  x 103 -6 .9457  

4 8.5778 x 1011 4.2000 x 104 2.3307 x 1012 3.7400 × 104 -9 .6000  x 103 - 1.4520 × 10 x 

5 2.5701 x 108 2.1300 x 104 3.0110 x 109 2.0400 x 104 -3 .1691 × 103 5.8265 x 10-1 
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Table 4 Mass and heat balance equations in a tubular reactor with 
laminar flow profile* 

Mass balance 
2(1 -rZ/RZ)d[C1]/dt = Rc, (a) 
2(1 -r2/R2)d[P~]/dt = Rp, (b) 

2(1 - r2/g 2 )d2o/dt = Rxo (c) 
2(1 - r2/g2)d2 a/dt = Rx~ (d) 

2(1 - r2/R 2)d[C2]/dt = Rc~ (e) 
2(1 - r2 /R2)d[W]/dt = R w (f) 

Heat balance 
. . O T  k d  [ OT\ 

2(I - r'/R')pCp ~ = ~r L r Or) + p(AQ) (g) 

Boundary conditions 

-k  ,=.=h(r-  r,) (h) 

= See 'Nomenclature'; Re available in ref. 5 

Feed 

I / / / / / / / ,  r j " / / / / / / / J  

J- z 

Coolont 
N÷2 f ,  Hypotheticol pt. 

Grid pts.[ N*I~N 
forFD ~N-I~ 

O= b "*'-Hypotheticol pt. 
Figure 1 (a) Schematic representation of the tubular reactor with 
cooling jacket. (b) Grid points for the finite-difference technique 
(methods I and II) 

reasons--first, because precise data on the diffusion 
coefficients are still not available 14, and secondly, since 
radial diffusion in the absence of vaporization is expected 
to be a second-order effect. Tai et al. ~ have also made 
similar approximations. It may be pointed out here that 
some work has been reported recently by Hamer and 
Ray 2° on the detailed modelling of continuous tubular 
chain polymerization reactors incorporating radial mass 
diffusion as well as accounting for property and velocity 
variations. Work along these lines for nylon-6 reactors 
could be carried out, but since our long-range focus was 
on optimization studies, we did not pursue this approach. 

The following correlations TM have been used for the 
various thermophysical properties: 

thermal conductivity 

k = 0.21 kcal m-  1 K -  1 h -  1 (Sa) 

density 

p(kg m -  3) = 1000{ 1.0065 + 0.0123[C 1] 

+ [ T ( K ) -  495] (0.000 35 + 0.000 07[C1]} -1 

(Sb) 

specific heat 

Cp(kcal kg-  1 K -  1) 

= 0.6593[C 1]/[C1]o + (1 - [C1]/[C1]o) 

[0.4861 + 0.000 337T(K)] (5c) 

The boundary condition at the wall of the reactor for 
the heat balance equation (equation (h) in Table4) is 
obtained by considering a coolant at a constant 
temperature, Tj (K), circulated in a jacket enclosing the 
reactor (Figure la), with the overall heat transfer 
coefficient h. The symmetry condition at r = 0 is given by 
equation (i) in Table4. 

A radial temperature gradient will be established in 
the reactor at any cross-section along the length because 
of the presence of the velocity profile as well as due to 
the heat flux through the wall. As a consequence, the 
concentrations of all the species will also have a radial 
variation. Hence, the variables [C1], [Pt] ,  20, 21, [C2], 
[W] and T are all functions of r and t in general, and 
can be represented as [C1](r, t), etc. To obtain all these 
profiles, the set of partial differential equations (PDEs) 
(equations (a)-(g) in Table 4) need to be integrated 
simultaneously with the boundary and symmetry 
conditions (equations (h)-(i) in Table 4). In addition, the 
closure approximation: 

[ P a ]  = [P2]  = [P1]  (6) 

is employed. This was first used by Reimschuessel 1. Tai 
et al. 22 have found that the final results are insensitive 
to this assumption under various conditions. 

To use the finite-difference (FD) 23 method, the radial 
distance, ~b~<r ~<R, is first divided into N equal parts, 
each of length Ar, using (N + 1) grid points numbered 
from 1 to N + 1 (Figure lb). Thus, thejth radial grid point 
at r = r i is at r-- ( j -  1)(Ar). The variables at rj are renamed 
for the sake of convenience as follows: 

U , j ( t ) -  ~(rj, t) i = 1, 2 . . . . .  7 (7a) 

j = l ,  2 . . . . .  N + I  

- [ [ C1 ] ,  [P1], 20, 21, [C2], [WJ, T] (7b) 

The radial derivatives (equation (g) in Table4), the 
boundary condition (equation (h) in Table4) and the 
symmetry condition (equation (i) in Table4) are 
converted into algebraic expressions using the FD 
technique 23. This has been done in two different ways. 
In the first method (method I), the Laplacian in the heat 
balance (equation (g) in Table 4) is broken up into two 
parts to give: 

2(1--rZ/R2)pCp OT-kOT ~02T 
dt r dr ~-kor~+P(AQ) (8) 

The finite-difference formulae 23 for the first and second 
derivatives (mid-point formulae) are then applied to give 
the following ordinary differential equation (ODE) 
corresponding to the j th point: 

2(1 -- rE/R2)pj(Cp)j dUvj 
dt 

k f  lk,~ U~ ~+1-U7 U~j+I-2UT'j+Uv'j-1)(Ar) 2 
= ' - - "  t 

+ pi(AQ)j j = 2 . . . . .  N (9) 

At the centre, i.e. at j =  1 (r=0), equation (9) presents a 
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problem, because it involves U7 at an undefined point, 
j = 0 ,  as well as division by zero (since r t = 0  ). This is 
resolved by using L'Hospital's rule as well as the 
symmetry condition in its FD form23: 

U 7 ' 2 - -  U7'°-- 0 o r  UT,o = Uv ,2  (10) 
2(Ar) 

Here, U7, o is the temperature at a hypothetical point, 
j = 0  (Figure Ib). The resulting equation corresponding 
t o j = l  is: 

2(1 - r2/R2)p 1 (Cp)l dUT,1/dt 

= [4k/(Ar) 2] (U7,2 - -  U7,1) + pl(AQ)I (11) 

Similarly equation (9) for j = N + 1 (r = R, at the wall) 
involves UV,N + 2, the temperature at another hypothetical 
point. This is resolved by using the FD form of the 
boundary condition (equation (h) in Table 4): 

UV,N+ 2 = UT,N-- [2(Ar)h/k] (UT,N+ ~ -- Tj) (12) 

This is used in equation (9) for j = N + 1. The set of mass 
balance equations can be transformed to the FD 
form quite easily. Thus, 7 ( N + l )  ordinary differential 
equations have been generated, which are given in 
Table 5. The number of variables to be solved for is also 
7(N + 1 ). These ODEs are solved using Gear's package 23, 
which has a built-in step size control algorithm and is 
particularly useful for stiff systems. The NAG Library 
Routine DO2EBF was used for this purpose in a DEC 
1090 system. 

The second approach of the finite-difference technique 
(method II) is very similar to method I except at the 
boundary points, j = l  and N +  1. To apply the FD 
technique to the boundary and the symmetry condition, 
the one-sided first derivative formulae (ref. 12, p. 68), 
which have the same degree of accuracy as the mid-point 
formulae used in method I, have to be used. The 
symmetry condition at r = 0 is transformed into: 

4 1 
U7,1 = ~UT,2--~U7, 3 (13) 

and the boundary condition at r = R gives: 

h Tj - [k/2(Ar)] (UT,N-1 --4Uv,N) 
UV,N+ 1 -- (14) 

h + [3k/2(Ar)] 

Table 5 Set of differential equations after applying method I of 
finite-difference technique" 

2(1 - -r2/R 2) d U l J d t = ( R v , )  ~ j = l  . . . . .  N +  1 

2(1--.r2/R 2) d U 2 J d t = t R v 2 ) j  j = l  . . . . .  N + I  

2( l - - r2/R 2) "dUr,Hdt=('Ror) j j =  1 . . . . .  U +  1 

2(1--r2/R2)pl(Cp) 1 dUT.t  4k 
dt  - ( A t )  i ( U T ' 2 - U ~ ' I ) + p l ( A Q ) I  

2 2 d U T . 1  20-ri/R )ps(C~)j 

= k (  l_ UTo+_~_ZU_v,J - '  ÷ UT 

\ r j  2(Ar) (Ar) 2 ] 

+ pj(AQ); j = 2  . . . . .  N +  1 

with 

U 7.N + Z = U V,N -- [2(Ar)h/k] (U 7,N + 1 -- Tj) 

(a) 

(b) 

(c) 

(d) 

(e) 

= Dependence of variables on t is not explicitly mentioned 

The FD form of the heat balance equation (similar to 
equation (9) at the centre and boundary points is thus 
avoided by using equations (13) and (14). This could be 
interpreted to mean that one is neglecting heat generation 
effects near the central and wall grid points. The resultant 
set of ODEs consists of equations (a)-(c) in Table 5 for 
j = 1 . . . . .  N + 1 and equation (e) in Table 5 for j = 2 . . . . .  
N. The total number of ODEs is 7(N+ 1 ) - 2  and the 
number of variables is also 7(N + 1) -2 .  The other two 
variables, i.e. the temperatures at the centre and at the 
external boundary point, can be obtained from equations 
(13) and (14). The same Gear's package is used for 
integrating the set of equations as in method I. 

A compact computer package for integrating the PDEs 
(NAG Library Routine D03PBF) was also used (method 
III). This package consists of a combination of the 
finite-difference technique and Gear's package to solve a 
set of PDEs with appropriate boundary conditions. As 
discussed later, methods I and III are essentially the same. 
However, method III has an additional flexibility in the 
sense that it can be used for any type of unequal grid 
spacing, upon changing an input integer, IMESH. The 
value used for our case was IMESH = 4, which results in 
having more grid points near the external boundary 
(where the gradients are expected to be steeper) according 
to the formula: 

r i=R sin[~t(i-1)/2N] i=1 ,  2 . . . . .  N + I  (15) 

This method was used to generate various simulation 
results. 

In all the numerical techniques, the variables obtained 
at the radial grid points at any t are used to get the 
average values. The averages can be computed using the 
'cup mixing rule' to give, for any concentration and 
moment: 

R 
r(1 -- r2 / R 2)U i(r, t )p(r ) dr 

U i ( t ) -  o R 

r(1-r2/R2)p(r)dr 
o 

and for temperature: 

for i=  1 . . . . .  6 

(16) 

R 
r(1 -- r2 / R2)U v(r, t )p(r)Cp(r) dr 

U T ( t ) =  o R 

S r(1-r2/R2)p(r)Cv(r)dr 
0 

(17) 

The integrals are computed by employing a third-order 
finite-difference formula given by Gill and Miller 24. The 
NAG Library Routine DO 1GAF is used for this purpose. 

In true laminar flow, the residence time at the wall is 
infinity. To avoid numerical problems, a small slip 
(vz(R)/v~v = 10 -4) was assumed at the wall. The numerical 
results were found to be relatively unaffected by changing 
the dimensionless velocity around 10 -4 . The inlet 
condition at the point r = R, t = 0, was also modified. The 
equilibrium conversion values of isothermal runs at 
250°C were fed in as values at r = R, t = 0. This reduced 
the computational time significantly and avoided 
convergence problems. Any change in these input values 
was found not to affect the results, but led to longer 
computational times. 
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RESULTS AND DISCUSSION 

A general computer program was made. Results for 
isothermal conditions could be obtained by putting Q = 0 
in the computer program. Similarly, adiabatic operation 
could be simulated by putting the overall heat transfer 
coefficient, h = 0. The program could be run using either 
plug flow (v= = constant = V,v) or parabolic flow (equation 
(3)) profiles. A typical run for t = 2 0 h  and 10FD points 
took 3 min 45 s on a DEC 1090 system. 

The computer programs for all three methods 
described previously were checked with results available 
in the literature 1°'25. The programs were run for the 
simple case of an isothermal plug flow reactor with the 
input variables: 

[C1] o = 8.8 mol kg-  1 

[W]o = 0.16 mol kg-  1 
(18) 

[P1]o = (2o)o = (2x)o = [C2]o =0  

R =0 .6m 

and for temperatures of 230, 240, 250 and 270°C. The 
results were found to be in complete agreement with those 
of Ray and Gupta 25, thus confirming the correctness of 
the computer programs (except the heat balance 
equation, which is not required for the isothermal 
reactor). The programs were also run for an adiabatic 
plug flow reactor with the feed coming from the top of 
a VK column 1°. The results were found to match those 
of Gupta and Gandhi 1°. This further confirmed the 
correctness of our computer programs (including the heat 
balance equation). 

Having developed confidence in the computer 
packages prepared, detailed temperature and concen- 
tration profiles for several conditions were generated. The 
feed conditions were the same as in equation (18). Table 6 
gives the various flow and heat transfer conditions 
used. Figures2 and 17 present profiles for monomer 
conversion, number-average chain length ( j [ 2 n : , ~ l / ~ 0 )  , 
temperature and cyclic dimer concentration for various 
values of t (=z/v,v). For heat transfer coefficient, h, a 
typical value 11 of 5 .0kca lm-2h  -1 was used. The 
existence of distinct concentration and temperature 
profiles is quite evident from these figures. These profiles 
can be obtained from any of the three FD algorithms, 
using a sufficiently large number of grid points. 

Figures 2 and 5 show the profiles at t = 5 h for various 
flow and heat transfer conditions (Table 6). The laminar 
flow case (curves 4, 5 and 6) is the most interesting. Since 
the velocity near the centre is higher, the residence time 
of a fluid element near the wall (at the same t) is far 
larger when compared to that of a fluid element near the 
centre. Thus, the reaction is close to equilibrium at the 

wall. A maximum in the temperature slightly away from 
the wall is observed (curves 5 and 6 in Figure 2) at t = 5 h. 
This represents a combination of higher heat generation 
(due to higher near-equilibrium conversion) near the wall 
as well as heat transfer effects. In the laminar adiabatic 
case (curve 5 in Figure 2), a temperature maximum first 
appears (at t near zero) at the wall because of almost 
instantaneous attainment of equilibrium conversions 
there. The high temperature leads to thermal diffusion 
away from the wall as t increases (since h=0),  
contributing to a decrease in the temperature at the wall. 
In addition, as t increases, layers adjacent to the wall 
reach near-equilibrium conversion (curves 5 and 6 in 
Figures 3 to 5), generating more heat there. This explains 
the temperature maximum in curve 5 of Figure 2. The 
peak shifts further inwards as t increases (Figure6). 
Because of cooling from the jacket, the temperatures at 
the wall are lower for the laminar non-adiabatic case 
(curve 6 of Figure 2). The slightly higher near-equilibrium 

30C 

2 9 0 -  

280 - 

1-. 

270 - 

2 6 0 -  

251 
0 

t = 5 h r  

Figure 2 
heat transfer conditions (given in Table 6). Feed condition is as per 
equation (18) 

® 

I I I I 
0.2 0.4 0.6 0.B 1.0 

r l R  

Radial profile for temperature at t = 5 h for various flow and 

Table 6 Various flow and heat transfer conditions used in simulation runs 

Heat transfer coefficient, Feed temp., Coolant temp., 
Run no. Type of flow Heat transfer condition h(kcalm-2 K-1 h -1) T o (°C) Tj (°C) 

1 Plug Isothermal - 250 - 

2 Plug Adiabatic 0 250 - 

3 Plug Non-adiabatic 5.0 250 260 

4 Laminar Isothermal - 250 - 

5 Laminar Adiabatic 0 250 - 

6 Laminar Non-adiabatic 5.0 250 260 

1922 POLYMER, 1989, Vol 30, October 



10(3 

80 

6C 

> 
r 

8 

40 

20 

t =5hr 

0 I I -  I ! I 

0 O. 2 0.4 0.6 0.8 1.0 

r /R 

Simulation of tubular nylon-6 reactors: D. Pal and S. K. Gupta 

t =Shr 

O.Ol, 

~= 0.03 

u 
c- 
o 
u 

E 
0-02 

® 

0.01 

0 0-2 0.4 0.6 0.8 1.0 

r / R  

Figure 3 R a d i a l  profi le  fo r  m o n o m e r  c o n v e r s i o n  a t  t = 5 h.  C o n d i t i o n s  
as in Figure 2 

Figure 5 Radial profile for [C2] at t = 5 h. Conditions as in Figure 2 

200 

150 - 

50 

t =5hr 

0 I I I I 
0 0-2 0.4 0.6 0-8 1.00 

r /R 

Figure 4 Radial  profile f o r / t ,  a t  t = 5 h. Condi t ions  as in Figure 2 

conversion for curve 6 in Figure 2 (compared to curve 5) 
is because of the lower temperatures present and the 
overall exothermic nature of the reactions. Since the 
equilibrium values of /~, are more sensitive to 
temperature, the difference between curves 5 and 6 in 
Figure 4 is greater. In plug flow, the residence times of 
fluid elements at the wall are not infinite, and so 
near-equilibrium conditions do not prevail at the wall 
for this ideal reactor. In the adiabatic case, the 
temperature (and other) profiles are fiat, as expected, 
since there is no driving force for creating radial 
differences. For  the plug flow non-adiabatic case (curve 
3 in Figure2) a temperature maximum near the wall 
develops again. Near t = 0 ,  a maximum appears at the 
wall (Tj>To). This leads to higher conversions at the 
wall, which simultaneously leads to higher heat 
generation by reaction at that point. Very soon the 
temperature at the wall increases beyond Tj. Heat transfer 
takes place both to the jacket as well as towards the 
centre. The conversion is the highest at the wall for case 
3 (Figure 3) since it represents a cumulative effect from 
t = 0  to 5. Figures6 to 17 show conditions at t =  10, 15 
and 20h. The trends at t = 5 h  continue, but some 
flattening of temperature profiles is observed, because of 
thermal diffusion effects away from the peak, both 
towards the wall as well as towards the centre. The 
conversion, #,,  and cyclic dimer concentration profiles 
show higher levels near the centre as t increases, as 
expected. Figures l5 and 17, at t = 2 0 h ,  show that even 
though the monomer conversion has almost attained 
equilibrium values throughout the cross-section, lower 
cyclic dimer concentrations near the centre are observed. 
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Figure 6 Radial profile for temperature at t =  10 h for various flow 
and heat transfer conditions (given in Table 6). Feed condition is as 
per equation 08 )  
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Figure l0 Radial profile for temperature at t =  15 h for various flow 
and heat transfer conditions (given in Table 6). Feed condition is as 
per equation (18) 
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Figure 18 Axial variation of T for various flow and heat transfer 
conditions (given in Table 6) with feed condition as per equation (l 8) 
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Figure 19 Axial variation of ~. for various flow and heat transfer 
conditions (given in Table 6) with feed condition as per equation (18) 

This is because equilibrium for the cyclic dimer reactions 
has not yet been attained. 

Fiouresl8 and 19 show the profiles of average 
temperature, T,, and average chain length, ~,, along the 
reactor length for the various flow and heat transfer 
conditions of Table 6. It is interesting to note that the 
distinct S shape for the plug flow case (curves 2 and 3 
in Figure 18) is relatively less prominent in the laminar 
flow case (curves 4 and 5 in Fioure 18). Average 
temperatures for the non-adiabatic case (curves 3 and 6 
in Figure18) are in general lower than that for the 
adiabatic case (curves 2 and 3 in Fioure 18) because of 
the cooling effects of the jacket fluid, except for the initial 
part of the plug flow case (curves 2 and 3 in Figure 18) 
where the jacket fluid has a heating effect as discussed 
earlier. For ~., again, the S shape in the case of plug 
flow (curves 1, 2 and 3 in Figure 19) is less prominent in 
laminar flow (curves 4, 5 and 6 in Fioure 19). In general, 
isothermal operation (curves 1 and 4 in Figure 19) gives 
lower ~. in the initial part of the reactor because of 
comparatively lower temperatures in this case. But as t 
increases and equilibrium conversions are attained, ~. 
for the isothermal case registers higher values. It is 
observed that even though the ~, vs. t curves for adiabatic 
and non-adiabatic operation are almost identical, the 
actual radial variations of/~, at any t are different in the 
two cases. 

Table 7 shows the effects of the various parameters, e.g. 
radius of the reactor (R), coolant temperature (Tj), feed 
temperature (To) and feed water concentration ([W]o), 
on the average values of temperature, monomer 

conversion, #, and cyclic dimer concentration. Decreasing 
the value of R to 0.4m (run 2) from the reference 
conditions (run 1) helps to increase radial heat transfer 
since the area-to-volume ratio increases. Thus, the initial 
heating effects of the jacket fluid increases T at 5 h over 
that for the reference run. As t increases, the temperature 
is comparatively lower due to better cooling. However, 
average conversion and ~, are always lower. Increasing 
the value of R (run 3 on Table 7) has the opposite effect. 
A lower coolant temperature (run 4 in Table 7) causes 
lower temperatures in the reactor. This reduces the 
average conversion and ~, initially. But, as equilibrium 
is attained at higher values of t, the average conversion 
and ~, are higher as an effect of lower temperatures. A 
lower feed temperature (run 5 in Table 7) causes lower 
T.. As before, the average conversion and ft, are initially 
lower, but are higher near equilibrium. Lower feed water 
concentrations (run 6 in Table 7) cause lower conversions 
and ~, initially, as the ring-opening step (step l in Table I ) 
is slower. But as t increases, and near-equilibrium 
conditions are attained, monomer conversion improves 
and reaches the values for the reference state, since 
equilibrium conversion of the polycondensation reaction 
(step 2 in Table 1) is higher for lower [W]. The effect on 
~, is much more pronounced. This is because a shift in 
the equilibrium for the polycondensation step to the 
right-hand side increases the chain length considerably. 
The effects of higher initial water concentration (run 7 
in Table 7) are opposite in comparison to run 6 in Table 7. 

The effect of some 'computational' variables is now 
studied. The value of the 'slip', i.e. the non-dimensional 
velocity (v=(R)/V,v) assumed at the wall (to avoid 
numerical overflow and other computational problems), 
was changed around the reference value of 10 -4 and 
some typical results are shown in Table 8. It is observed 
that the results are relatively unaffected by changing the 
slip, but the CPU time requirement increases for lower 
values of the slip. Similarly, instead of using the actual 
feed conditions at t=0 ,  r=R, values of [C1]o, [W]o, 
[P1]o, etc., close to equilibrium values at the wall 
temperature were used for the laminar flow case, to make 
the equations less stiff. These values were changed to see 
their effect on the numerical results further down the 
reactor. The results were found to be quite insensitive to 
this change, but feeding in the near-equilibrium values 
reduced the computational time. 

Figure 20 shows the effect of increasing the number of 
FD grid points (non-equispaced) on the results at t = 5 h. 
The runs were made using method III, with the spacing 
of grid points denser near the wall (equation (15)). The 
figure shows very clearly that the results, particularly 
near the wall, converge as the number of points is 
increased and after about eight points the results do not 
show any major discrepancy. The results for more than 
10 points are almost indistinguishable from those for l0 
points. 

Methods I and III (with the latter program run for 
identical placement of equispaced FD grid points) were 
found to give the same results for various reactor 
conditions. This confirms that these two computer 
programs, one in the NAG Library and one made by us, 
are almost the same. Both of them use the FD technique 
with Gear's method. Method III, however, is more 
flexible since it permits the use of unequal spacing of FD 
grid points, and is highly recommended. 

Some discrepancy near the wall was found between 

POLYMER, 1989, Vol 60, October 1927 



Simulation of tubular nylon-6 reactors." D. Pal and S. K. Gupta 

Table 7 Effect of various parameters on average values 

Run Description = t (h) T(°C) Avg. cony. (%) /]. [(~2] 

1. Reference conditions: 5 264.09 28.24 67.08 0.00516 

Laminar  flow 10 287.20 73.66 123.83 0.01788 

Non-adiabat ic  (h = 5) 15 294.09 88.50 149.61 0.03003 
R = 0 . 6 m  
Tj = 260°C 20 293.83 89.65 151.36 0.03702 

To =250°C 
Feed condition as per equation (18) 

2. R = 0 . 4 m  5 264.27 29.09 68.79 0.00497 

10 287.06 74.89 126.46 0.01782 

15 292.90 88.80 150.72 0.03002 

20 292.01 89.78 152.52 0.03684 

3. R = 0 . 8 m  5 263.96 27.66 65.69 0.00524 

10 287.39 73.19 122.80 0.01786 

15 294.71 88.38 149.09 0.03000 

20 294.73 89.59 150.80 0.03706 

4. ~ = 2 5 0 ° C  5 263.49 28.03 66.71 0.00486 

10 286.44 73.67 124.19 0.01751 

15 293.12 88.55 150.22 0.02969 

20 292.64 89.73 152.13 0.03670 

5. To=240°C 5 247.96 t5.38 53.06 0.00253 

10 264.57 47.73 89.55 0.00940 

15 278.46 74.90 128.58 0.01757 

20 284.75 88.09 153.77 0.02685 

6. [ W ] o = 0 . 1 3 m o l k g  -1 5 260.25 20.76 65.07 0.00352 

10 280.21 60.04 117.87 0.01301 

15 292.05 84.16 161.87 0.02413 

20 293.84 89.17 170.77 0.03260 

7. [ W ] o = 0 . 1 8 m o l k g  -1 5 266.66 33.24 67.38 0.00638 

10 290.52 80.16 125.50 0.02108 

15 294.38 89.30 140.50 0.03305 

20 293.72 89.71 141.25 0.03892 

8. h =  1 0 k c a l m - 2 K - l h  -1 5 263.88 28.22 67.07 0.00508 

10 286.89 73.67 123.99 0.01775 

15 293.70 88.52 149.86 0.02991 

20 293.38 89.68 151.65 0.03690 

"Al l  other values in runs 2-8 are as in reference conditions 

Table 8 Effect of slip on simulation runs 

Wall temp. C P U  time 
Run = Slip used at 5 h (°C) (for t = 5 h) 

1 10- 4 (ref) 287.51 2 min 25 s 
2 10 -6  287.51 3min  5s  
3 10 -a  287.51 2mi n  6s  

= All runs are for laminar flow adiabatic reactor with feed condition as 
per equation (18) 

Table 9 Compar ison  of methods  I and II ° (laminar flow adiabatic 
reactor) 

No. of 
FD  points, 
( N +  1) 

Temp.  at the wall (TN.I) at t = 5 h  (°C) 

Method I Method II 

9 290.04 294.85 
12 285.72 288.68 
15 287.62 288.04 
20 287.50 287.50 

° Equispaced grid points 
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Figure 20 Temperature profile at t = 5 h in a laminar flow adiabatic 
reactor (feed conditions given in equation (18)) for different number  
of  non-equispaced grid points using finite difference (method III) 
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the results obtained using methods I and II. It may be 
mentioned that these two FD techniques differ only in 
terms of the boundary conditions. Table 9 shows the wall 
temperatures (which are most sensitive) for the laminar 
flow adiabatic reactor as predicted by methods I and II, 
at t=  5 h. With nine FD grid points the results show 
some differences at the wall, though those at the internal 
positions agree well. The reason for this discrepancy lies 
in the fact that, in method II, the wall temperature is 
obtained using the boundary condition alone (equation 
(14)). Therefore, the ODE from the heat balance equation 
at the wall (r=R), and thus the heat-of-reaction 
information near that location, is not used. In method 
I, on the other hand, both the boundary condition and 
the ODE from the heat balance are used at r=R.  
Therefore, when the gradients are steep near the wall (for 
lower values of t), method I gives better predictions. Thus, 
method I is superior to method II, particularly with 
regard to the results near the wall. However, as the 
number of FD points is increased, the results for both 
the methods should and do indeed converge as seen in 
Table 9. Similar results are obtained for the non-adiabatic 
case. However, for the non-adiabatic case of the plug 
flow reactor, where the temperature gradients near the 
wall are not so steep, the results agree well for the two 
methods (I and II). 

CONCLUSIONS 

A comprehensive study of the simulation of nylon-6 
polymerization in a non-vaporizing continuous-flow 
tubular reactor was presented, taking into consideration 
the radial temperature and hence concentration vari- 
ations arising out of radial thermal diffusion and laminar 
flow profile. A very general computer package was 
prepared to solve the set of differential equations obtained 
from the mass and heat balances, for isothermal, 
adiabatic and non-adiabatic operations and for both the 
cases of plus flow and laminar flow profiles. Two types 
of finite-difference methods (methods I and II) were used 
to convert the PFDs into ODEs, which were 
subsequently solved using Gear's method. Another 
program (method III) from the NAG Library, which uses 
a combined package of finite difference and Gear's 
method and uses non-equispaced grid points and so is 
more powerful, was also used. 

A comparison of the various methods was made. 
Methods I and III were found to be essentially similar, 
with the latter having more flexibility as it could use any 
type of spacing of grid points. Method II was found to 
give poorer results near the wall, particularly when the 
temperature gradient near the wall was steep. Both 
methods I and II, however, agreed well as the number 
of grid points was increased. 
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NOMENCLATURE 

A~, .4~ 
C1 
C2 
Cp 
(c~)j 

h 

AHi 
k 
ki 
k; 
Ki 
N 

Pl 
P, 
AQ 
r 
rj 

Ar 

R 
Rg 
ASi 
t 
T 

T, 

Frequency factors 
e-caprolactam 
Cyclic dimer 
Specific heat (kcal kg- 1 K -  ~) 
Specific heat at the jth grid point 

(kcal kg- 1 K - 1 ) 
Activation energy 
Overall heat transfer coefficient 

(kcal m-  2 K - 1 h - 1) 
Enthalpy of reaction (cal mol- x) 
Thermal conductivity (kcal m-  ~ K-  1 h-  1) 
Forward rate constant 
Backward rate constant 
Equilibrium constant 
Number of internal grid points (excluding the 

point at the wall) 
Aminocaproic acid 
Polymeric species of chain length n 
Overall heat of generation (kcal kg- ~ h - x ) 
Radius (m) 
Radial distance ofjth grid point (m) 
Distance between two grid points in finite 

difference (equal spacing) (m) 
Reactor radius (m) 
Universal gas constant (cal mol- l K -  ~) 
Entropy of reaction (eu) 
Average residence time (h) 
Temperature (K) 
Average temperature at any cross-section (K) 
Coolant temperature in jacket (K) 

POLYMER, 1989, Vol 60, October 1929 



Simulation of tubular nylon-6 reactors: D. Pal and S. K. Gupta 

Ui,j 
Vz 
/Jay 
W 
X 
Xj 
Z 
2k 

P 
Pj 

ith variable at jth grid point /tn 
Axial velocity (m h- 1) ~. 
Average axial velocity (m h-1) 
Water 
Non-dimensional radius 
Non-dimensional radius at jth grid point Subscript 
Axial distance (m) 0 
kth moment for the polymeric species 

(mol kg- 1 ) 
Density (kg m- 3) Symbol 
Density atjth grid point (kgm -3) [ ] 

Number-average chain length 
Average value of the number-average chain 
length at any cross section 

Initial value in the feed 

Concentration of a species (mol kg-1) 
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